
Developer Cost Optimization Checklist

��-Day Implementation Guide for Building Cost-

Efficient Cloud Applications

Your practical roadmap to embedding cost optimization into your development

workflow

📋 Overview

This comprehensive checklist provides a structured ��-day approach to implementing

cost optimization practices in your development workflow. Each week focuses on

specific areas, building upon previous foundations to create a sustainable cost-aware

development culture.

Expected Outcomes: - ��-��% reduction in development environment costs -

Improved cost visibility and accountability - Automated cost optimization processes -

Team-wide cost awareness and best practices

🗓 Week �: Foundation Setup

Building the groundwork for cost-aware development

Day �-�: Cost Monitoring Setup

☐ Set up cost monitoring and alerting - [] Configure cost alerts for your development

subscription/account - [] Set budget thresholds: ��% warning, ���% critical - [] Create

cost dashboard accessible to all team members - [] Document baseline costs for

current development environment

Tools & Resources: - Azure: Cost Management + Billing alerts - AWS: Cost Explorer +

Budgets - GCP: Cloud Billing + Budget alerts

Success Criteria: ✓ Alerts configured and tested ✓ Team has access to cost dashboard

✓ Baseline costs documented

Day �-�: Resource Tagging Strategy

☐ Implement consistent resource tagging - [] Define tagging taxonomy

(Environment, Owner, Project, CostCenter) - [] Create tagging policy document - [] Tag

all existing development resources - [] Set up automated tagging for new resources

Required Tags:

Environment: Development/Staging/Production
Owner: team-email@company.com
Project: project-name
CostCenter: department-code
AutoShutdown: true/false

Success Criteria: ✓ All resources properly tagged ✓ Tagging automation in place ✓

Team trained on tagging standards

Day �-�: Cost Estimation Process

☐ Create cost estimation workflow - [] Install and configure cost estimation tools

(Infracost, Azure Pricing Calculator) - [] Create cost estimation template for new

features - [] Integrate cost estimation into planning process - [] Train team on cost

estimation tools

Cost Estimation Template: - Infrastructure components and sizing - Expected usage

patterns - Data transfer requirements - Storage needs and access patterns - Estimated

monthly cost range

Success Criteria: ✓ Cost estimation tools configured ✓ Template created and

documented ✓ Team trained on estimation process

🗓 Week �: Architecture Review

Optimizing your application architecture for cost efficiency

Day �-��: Serverless Opportunities Audit

☐ Identify serverless migration candidates - [] Audit current application

components - [] Identify event-driven workloads - [] Evaluate API endpoints for

serverless conversion - [] Assess batch processing jobs for serverless

Evaluation Criteria: - Sporadic or event-driven usage patterns - Stateless processing

requirements - Short execution times (< �� minutes) - Variable load patterns

☐ Plan serverless migrations - [] Prioritize components by cost impact - [] Create

migration timeline - [] Estimate cost savings potential - [] Document migration

approach

Success Criteria: ✓ Serverless candidates identified ✓ Migration plan created ✓ Cost

savings estimated

Day ��-��: Caching Strategy Implementation

☐ Implement multi-level caching - [] Audit current data access patterns - [] Identify

frequently accessed data - [] Implement application-level caching - [] Configure CDN

for static content - [] Set up database query caching

Caching Layers: �. Browser caching (static assets) �. CDN caching (global content) �.

Application caching (Redis/Memcached) �. Database query caching

☐ Measure caching effectiveness - [] Monitor cache hit rates - [] Track performance

improvements - [] Calculate cost savings from reduced compute

Success Criteria: ✓ Multi-level caching implemented ✓ Cache hit rates > ��% ✓

Measurable performance improvement

Day ��-��: Database Optimization

☐ Optimize database performance and costs - [] Audit database queries and

performance - [] Implement proper indexing strategy - [] Optimize expensive queries -

[] Review database sizing and scaling - [] Implement connection pooling

Database Optimization Checklist: - [] Identify slow queries (> � second) - [] Add

missing indexes - [] Optimize JOIN operations - [] Implement query result caching - []

Right-size database instances

Success Criteria: ✓ Query performance improved by ��%+ ✓ Database costs optimized

✓ Proper indexing in place

🗓 Week �: Automation Implementation

Automating cost optimization processes

Day ��-��: Environment Lifecycle Automation

☐ Implement automated environment management - [] Set up automated

environment creation - [] Configure environment destruction policies - [] Implement

branch-based environment lifecycle - [] Create environment scheduling (auto-

shutdown)

Environment Lifecycle Rules: - Development environments: Auto-shutdown after �

hours - Feature branch environments: Auto-destroy after � days of inactivity - Staging

environments: Auto-shutdown outside business hours - Temporary environments:

Auto-destroy after �� hours

☐ Configure auto-shutdown policies - [] Implement VM auto-shutdown schedules - [

] Configure database auto-pause for dev environments - [] Set up container auto-

scaling to zero - [] Create weekend shutdown automation

Success Criteria: ✓ Environment lifecycle automation active ✓ Auto-shutdown policies

implemented ✓ ��%+ reduction in off-hours costs

Day ��-��: Data Lifecycle Policies

☐ Implement storage optimization - [] Audit current storage usage and costs - []

Implement data lifecycle policies - [] Configure automated data archival - [] Set up

automated cleanup of temporary data

Storage Lifecycle Policies: - Logs: Move to cool storage after �� days, archive after ��

days - Backups: Move to archive storage after �� days - Test data: Auto-delete after �

days - Build artifacts: Retain for �� days, then delete

☐ Optimize storage tiers - [] Move infrequently accessed data to cool storage - []

Implement intelligent tiering - [] Configure compression for archived data - [] Set up

automated cleanup scripts

Success Criteria: ✓ Data lifecycle policies active ✓ Storage costs reduced by ��%+ ✓

Automated cleanup processes running

Day ��-��: Auto-Scaling Configuration

☐ Configure intelligent auto-scaling - [] Implement horizontal auto-scaling policies -

[] Set appropriate scaling thresholds - [] Configure scale-down policies - [] Test

scaling behavior under load

Auto-Scaling Best Practices: - Scale up quickly (�-� minutes) - Scale down slowly (��-

�� minutes) - Set minimum instances to � for dev environments - Use predictive scaling

for known patterns

☐ Optimize scaling policies - [] Monitor scaling events and costs - [] Adjust

thresholds based on actual usage - [] Implement scheduled scaling for predictable

loads - [] Configure alerts for scaling anomalies

Success Criteria: ✓ Auto-scaling policies configured ✓ Scaling behavior optimized ✓

Cost-effective scaling thresholds set

🗓 Week �: Monitoring & Optimization

Establishing ongoing cost optimization practices

Day ��-��: Cost Dashboard Creation

☐ Build comprehensive cost dashboard - [] Create team cost visibility dashboard - []

Implement cost trend analysis - [] Set up cost anomaly detection - [] Configure

automated cost reports

Dashboard Components: - Daily/weekly/monthly cost trends - Cost breakdown by

service/environment - Cost per feature/project - Budget vs. actual spending - Top cost

contributors - Optimization opportunities

☐ Implement cost alerting - [] Set up intelligent cost alerts - [] Configure anomaly

detection - [] Create escalation procedures - [] Test alert responsiveness

Success Criteria: ✓ Comprehensive dashboard deployed ✓ Team has cost visibility ✓

Alerts configured and tested

Day ��-��: Team Cost Review Process

☐ Establish regular cost review meetings - [] Schedule monthly cost review

meetings - [] Create cost review agenda template - [] Define cost optimization KPIs - []

Assign cost optimization responsibilities

Monthly Cost Review Agenda: �. Cost trends and anomalies �. Budget vs. actual

analysis �. Optimization opportunities identified �. Action items from previous month

�. New optimization initiatives �. Team cost awareness training

☐ Create cost optimization playbook - [] Document common optimization scenarios

- [] Create troubleshooting guides - [] Establish escalation procedures - [] Define

success metrics

Success Criteria: ✓ Regular cost review process established ✓ Team cost

responsibilities defined ✓ Optimization playbook created

Day ��-��: Documentation & Knowledge Sharing

☐ Document lessons learned - [] Create cost optimization knowledge base - []

Document successful optimization strategies - [] Share lessons learned with broader

organization - [] Create training materials for new team members

Knowledge Base Contents: - Cost optimization strategies that worked - Common

pitfalls and how to avoid them - Tool configurations and best practices - Cost

monitoring and alerting setup - Troubleshooting guides

☐ Plan continuous improvement - [] Identify areas for further optimization - [] Plan

next month's optimization initiatives - [] Set up quarterly cost optimization reviews - []

Create feedback loop for ongoing improvement

Success Criteria: ✓ Knowledge base created and populated ✓ Lessons learned

documented ✓ Continuous improvement plan established

📊 Success Metrics & KPIs

Week � Targets

[] ���% of resources properly tagged

[] Cost monitoring and alerting active

[] Baseline costs documented

Week � Targets

[] ��% improvement in query performance

[] Caching hit rates > ��%

[] Serverless migration plan created

Week � Targets

[] ��% reduction in off-hours costs

[] ��% reduction in storage costs

[] Auto-scaling policies active

Week � Targets

[] Cost dashboard deployed and used

[] Monthly cost review process established

[] Team cost optimization knowledge documented

Overall ��-Day Targets

[] ��-��% reduction in development environment costs

[] ���% cost visibility across all resources

[] Automated cost optimization processes in place

[] Team-wide cost awareness established

🛠 Tools & Resources

Cost Monitoring Tools

Azure: Cost Management + Billing, Azure Advisor

AWS: Cost Explorer, AWS Budgets, Trusted Advisor

GCP: Cloud Billing, Recommender

Multi-Cloud: CloudHealth, Cloudability

Infrastructure as Code

Terraform with Infracost for cost estimation

ARM Templates with Azure Cost Estimator

CloudFormation with AWS Cost Calculator

Automation Tools

Azure: Logic Apps, Azure Functions, Azure Automation

AWS: Lambda, EventBridge, Systems Manager

GCP: Cloud Functions, Cloud Scheduler, Cloud Workflows

Monitoring & Alerting

Application Performance: Application Insights, CloudWatch, Stackdriver

Cost Alerting: Native cloud provider tools + PagerDuty/Slack integration

Dashboard: Grafana, Power BI, CloudWatch Dashboards

🎯 Next Steps

After completing this ��-day checklist:

�. Quarterly Reviews: Schedule quarterly cost optimization reviews

�. Advanced Optimization: Explore advanced techniques like spot instances,

reserved capacity

�. Cross-Team Sharing: Share learnings with other development teams

�. Tool Evaluation: Evaluate additional cost optimization tools and services

�. Continuous Learning: Stay updated on new cloud cost optimization features and

best practices

📞 Support & Resources

CloudCostChefs Community: Join our community for ongoing support and best

practice sharing

Documentation: Access detailed guides and tutorials at cloudcostchefs.com

Tools: Download additional tools and templates from our resource library

Remember: Cost optimization is a journey, not a destination. Small, consistent

improvements compound into significant savings over time. Start with the basics and

build upon your successes!

